lunes, 27 de octubre de 2014

memoria secundaria: discos opticos (cd, dvd)





CD-ROM / DVD





Un mundo de colores

Los primeros discos de CD fueron creados por Phillips, con la intención de obtener un soporte audio más compacto y de mayor calidad. Su especificación se conoce como Libro Rojo, debido a que éste era el color del libro en el que fue publicado. Estos discos tienen una única pista dividida en bloques de datos de 235 bytes, los cuales son leídos a un ratio de 75 bloques por segundo, con dos niveles de corrección de errores.

La especificación del formato CD-ROM para PC creada en 1984 y también conocida como Libro Amarillo, añade un nivel adicional de corrección de errores al estándar anterior.
Cada bloque de información incluye al principio del mismo una cabecera o bloque extra de datos. Esta especificación se divide en dos partes o modos. El modo 1 incluye ECC (Código de corrección de errores), el cual requiere 280 bytes, con los cuales el bloque de datos consta de 2.048 bytes. En modo 2 no se incluye ECC, con lo que el bloque de datos llega hasta los 2.336 bytes.

En 1985 la organización ISO (Organización de Estandartes Internacionales) creó el comité 660 en Hohg Sierra (Estados Unidos). De allí nació la norma High Sierra o ISO 9660, un sistema que no depende de la plataforma de trabajo (puede ser utilizada indistintamente en PC´s, Macintosh e incluso Workstation) y que se basa en la jerarquía de ficheros del DOS, es decir, los nombres de archivos constan de 8 caracteres más 3 de extensión. Junto a ésta nos encontramos con la norma HFS de Apple (con un ámbito de aplicación más restringido) que trata los ficheros en la forma usual de los Mac (ventanas, iconos y demás). 

Actualmente se está trabajando en una nueva estructura de ficheros, ECMA 168, capaz de aprovechar al máximo las posibilidades de cada sistema operativo.

El Cd-Rom un circulo lleno de información

El Cd-Rom es un disco en el cual cabe una gran masa de información, siempre y cuando lo comparemos con los anteriores dispositivos de almacenamiento que aún existen en el mercado, dejando aparte los Discos Duros.

A principios de 1984 hacen su aparición en el mercado, estos tenían un coste altísimo y no estaba a las manos de cualquiera, aunque poco a poco se han ido estandarizado a lo largo del tiempo hasta llegar a nuestras fechas, el cual ya es un dispositivo de almacenamiento de información más común.

Creación de un CD-Rom.

Su creación está compuesta por tres fases:

1ª Fase: Atmósfera

Estos se fabrican en una atmósfera totalmente exenta de polvo y en condiciones estables de temperatura. Dicho proceso comienza con una fase de premastering, en la que se recuperan los datos entregados por el cliente y se pasan a la norma ISO 9660. A continuación viene la fase de mastering propiamente dicha, en la que un láser graba los datos en el glass master, un disco de cristal de 24 centímetros de diámetro y 6 milímetros de espesor, recubierto de una capa d resina fotosensible de un espesor de 0,12 micras.

La grabación se efectúa comenzando en el centro del disco hacia el exterior, por último, se deposita una fina capa de plata por metalización en vacío.

Seguidamente tiene lugar la fase de galvano en la que, mediante electrólisis, se deposita una capa de Níquel de 300 micras en el glass master. Después, la capa de Níquel se separa del substrato de vidrio, recuperándose así el negativo del CD a prensar. Una nueva fase de electrólisis permite obtener otras matrices que sean utilizadas en al fase del prensado.

2ª Fase: Prensado de la Copia

El prensado consiste en la obtención de las diferentes copias que compondrán la serie. El Cd-Rom es de policarbonato, material plástica idéntica a la que compone el Cd de audio. 
La resina de policarbonato en fusión es inyectada entre la matriz y una pieza perfectamente plana dentro de un molde. A continuación, por evaporación, se deposita sobre el CD una capa de aluminio de 0,05 micras para hacerlo perfectamente reflectante. Después se baña por centrifugación de un barniz especial, protegiendo así el Cd-Rom de las agresiones externas.

El proceso finaliza con el serigrafiado del disco, el empaquetado automático en estuche junto con el libreto y, por último, su introducción en el envoltorio de celofán.

3ª Fase: Control de Calidad

Para garantizar la máxima calidad de acabado, es recomendable llevar a cabo controles exhaustivos en las distintas fases de fabricación. De este modo, en la etapa de mastering se debían controlar los procesos de preparación del substrato, grabación (analizando el perfecto traslado de la información numérica al láser), control automático de todas las señales eléctricas y control de coherencia.

Durante la fase de galvano hay que realizar controles numéricos de las matrices, además del control físico de estas, así como su espesor, su rugosidad ya la excentricidad del agujero central. Por último, en el proceso de prensado se deberían realizar controles de recogida sobre el policarbonato y la geometría de los discos, además de comprobar íntegramente todas las señales numéricas del primer ejemplar prensado, comparándolo con ficheros CD-WORM previamente creados.

Analizando los Cd-Rom

Una vez visto como se crea el cd-rom, hay que diferenciar bien entre los distintos dispositivos de cd-rom que existen en el mercado, como pueden ser:

    • Lectores CD-Rom
    • Grabadoras Cd-Rom
    • Re-grabadoras Cd-Rom
    • Dvd-Rom- Dvd-Ram

Lectores de CD-Rom

De los diferentes lectores de Cd-Rom que componen la oferta del mercado, son mayoría los que se encuentran con un caddy. Las razones que mueven a un fabricante a optar por un diseño más simple (de bandeja) son, como casi siempre, de índole económica: se trata de reducir costes para afinar el precio final.

Ahora bien, lo que para el usuario puede ser una ventaja se suele convertir a la larga un arma de doble filo. Y es que los lectores de Cd-Rom son extremadamente sensibles al polvo. Un detalle que nos suele pasar inadvertido cuando escuchamos discos de audio en la cadena de nuestro salón y que, sin embargo, causa errores al tratar de acceder a un programa.

Y lo curioso es que no basta con limpiar cuidadosamente los discos antes de meterlos en el lector. Las motas de polvo pueden llegar impulsadas por la corriente de aire creada por el ventilador interno del Pc. Ante este enemigo el caddy (una pequeña caja de plástico en la que se introduce el disco), constituye una defensa eficaz.

Para que la información fluya entre el CD-Rom y el ordenador no basta simplemente con conectar un cable, sino que se necesita además una interfaz y una controladora. El ordenador envía su petición al interfaz, que a su vez se lo pasa a la controladora, quien se encarga de recuperar la información solicitada y se le envía al ordenador vía la interfaz.

En el mercado actual podemos encontrarnos con controladoras IDE y SCSI, las primeras suelen ser utilizadas en discos pequeños o de tamaño medio y cuentan con la ventaja de su simplicidad y su económico precio. Por su parte, las controladoras SCSI permiten el manejo de varios dispositivos, incluyendo discos de gran capacidad, y suelen ser más rápidas.

La mayoría de las unidades de CD-ROM en particular las de alta velocidad, se construyen con interfaces SCSI, pues son fáciles de configurar y ofrecen altos índices de transferencia. La primera implantación del estándar, el SCSI-1 de 8 bits, fue presentada en 1986, tras cuatro años de discusión. Permite conectar hasta 8 dispositivos, (uno de los cuales es el propio PC), cada uno con su propio identificador.

En 1992 se aprobaron varios estándares SCSI-2. Estos ofrecen mejor compatibilidad, aunque en la versión normal de 8 bits no aportan ventaja significativas sobre el diseño previo. El Fast-SCSI-2 dobla la velocidad de transferencia, llegando hasta lo 2ç10 mbytes por segundo, pero sigue siendo de 8 bits. 

Junto a éste aparecieron dos SCSI <anchos> de 16 y 32 bits respectivamente, el primero de los cuales alcanzaba los 20 Mbytes por segundo y permitía la conexión de hasta 15 dispositivos al PC. Por su parte, el Fast-SCSI-2 de 32 bits dobla de nuevo la velocidad de transferencia y permite dispositivos.

Estándares CD

Todas las normas que rigen el funcionamiento y sistemas de producción y homogeneización de los CDs se recogen en los llamados Rainbow Books, que son el Red Book, Yellow Book, Green Book, Orange Book, White Book y Blue Book. Los nombres de estos libros se deben al color de la lente láser instalada en la unidad.

Red Book

El Red Book define el standard de los CD-DA, la aplicación original del CD, que guarda información auditiva en formato digital. Este libro se refiere a la norma ISO 10149.

En un CD de audio se leen 75 sectores por segundo. Cada sector contiene 3234 Bytes, 2352 de los cuales se pueden utilizar para el almacenamiento de música, utilizándose el resto para reconocimiento y corrección de errores. Por lo tanto, cada segundo se leen 176400 Bytes. Este número se hará fundamental en los CD-ROM: es el ratio de transmisión de datos.

En la transición desde los discos de vinilo al CD-DA se llevó a cabo el cambio del formato analógico de las señales auditivas a formato digital. El proceso de digitalización de señales sonoras analógicas se denominó PCM (Pulse Code Modulation), y consiste en dar a cada diferencia de tensión de la señal analógica un valor discreto, medible en una escala ordinal, de manera que le almacene en el CD únicamente el valor discreto asignado.

Yellow Book

El Yellow Book, aparecido en 1984, define los estándares de formato de información para discos CD-ROM, e incluye el CD-XA, que añade información de audio comprimida junto a otros tipos de datos. Fue desarrollado por las compañías Philips y Sony, punteras en cuanto a tecnología de CD se refiere.

En el Yellow Book se definen dos procesos de formato lógico para datos: Modo 1 y Modo 2. La razón de ello se debe a que los datos de ordenador reaccionan de una manera delicada a los errores de lectura. En los CD de audio, un fallo de lectura en un Byte puede notarse en la calidad de la reproducción, pero en un CD-ROM representa un riesgo demasiado peligroso como para no tomarlo en consideración.

Por lo tanto, se ideó un nuevo procedimiento de formato que reducía el índice de fallos a 1 Byte defectuoso por cada billón (= 1 TB). Se perdía en el cambio parte de la capacidad de almacenamiento, pasándose de sectores con 2352 Bytes disponibles a sectores con 2048 Bytes, traspasándose 280 Bytes a la corrección de errores, y algún otro Byte más para direccionamiento en los sectores. Este modo de almacenamiento de datos se llamó Modo1.

Existe otro tipo de almacenamiento especificado en el Yellow Book, que es el Modo 2. En este caso, se renuncia a los 280 Bytes de comprobación adicionales, con los que s podrán guardar menos datos críticos; quedando 2336 Bytes útiles para almacenamiento.

La velocidad de transmisión se calcula como en los CD-DA. En principio (CDs de velocidad simple), se leen 75 sectores por segundo, solo que en este caso hay menos Bytes de datos útiles. En Modo 1 se dispone de 2048 Bytes de datos, por lo que el ratio de transmisión es de 150 KB/s. En Modo 2 este ratio es de 171 KB/s. Posteriormente, las unidades lectoras de CD-ROM se hicieron más potentes, pudiendo aumentar estos ratios en progresión aritmética. La clasificación que desde entonces se hace de las unidades lectoras, grabadoras y regrabadoras de CD se explica en el apartado `2X qué?'.

Ahora, conociendo el número de sectores de un determinado CD podremos calcular la capacidad máxima del mismo, para lo cual basta con multiplicar el número de sectores por el número de Bytes útiles en cada sector.

Green Book

El Green Book indica la normativa a seguir en los CD-i, desarrollados por Philips como evolución técnica del CD-ROM, a partir del Yellow Book. El CD-i utiliza un nuevo sistema de compresión de audio denominado ADPCM (Adaptive Delta Pulse Code Modulation), que permite incluir en un solo disco más de 20 horas de sonido en calidad monoaural (2 en calidad estéreo). También permite que el audio, el vídeo, y las pistas de datos se entrelacen en el disco, de manera que puedan ser combinadas por el PC al más puro estilo de la `stravaganza multimedia'.

Entre sus otras capacidades, el standard del Green Book permite datos ocultos en el área inicial usada por la tabla de contenidos. Debido a que los CD-DA bajo el Red Book no intentan reproducir la información situada en el área de pre-datos, colocarlos aquí según el standard del Green Book previene el problema del track 1 Este método de grabación es naturalmente monosesión, por lo que funciona correctamente incluso en unidades de lectura que no ofrecen soporte para discos multisesión. Esta particularidad en concreto ha decantado a muchos editores de publicaciones en CD por este formato, ya que, al estar el área de precarga más próxima al centro del disco, sufre menos riesgo de ser dañada, por lo que garantiza una mayor integridad de los datos.

Orange Book

El Orange Book es el libro que describe los requerimientos y las pautas de los sistemas de grabación de discos compactos. El anteriormentemedio de sólo lectura se convierte ahora en medio de una sola escritura, permitiendo a los usuarios la creación de sus propios CDs. Presentado en 1992, el standard representado en el Orange Book introducía por completo la tecnología multisesión. Esta tecnología supone que un mismo disco pueda contener información grabada en él a lo largo de diferentes momentos dispersos en el tiempo (sesiones). Cada sesión tiene su propia zona lead-in, y su tabla de contenidos.

Desarrollado conjuntamente por Philips y Sony, el Orange Book define tanto la estructura física de los CDs grabables como las diversas partes que deben incluirse en el área de datos de los mismos. Estas áreas son: área de programa, que recoge la información que debe almacenarse en el disco, un área de memoria de programa, que incluye información sobre todas las pistas del CD y sobre todas las sesiones que contiene, las zonas de carga y descarga (lead-in y lead-out) y, por último, una zona de calibración de la potencia del haz grabador láser.

Blue Book

Es el más reciente de los estándares de CDs, y fue publicado en Diciembre de 1995. Presenta los CD multisesión estampados, que resuelven el problema de compatibilidad de la pista 1. El standard Blue Book necesita que la primera pista de un CD multisesión siga el standard Red Book de audio. La segunda sesión, que es invisible para los reproductores de CD audio comunes, contiene información para ordenador. Los lectores de CD que siguen el standard Blue Book de manera correcta pueden leer ambas parte de los discos: sonido y datos. La tecnología en que se basa el standard Blue Book se conocía al principio con el nombre de CD-Extra.

En los discos CD-R, un láser escribe el patrón de información en una capa de tinte orgánico, variando irreversiblemente sus características ópticas. Gracias a su alta reflectividad, el disco CD-R satisface plenamente las especificaciones originales para CD, y todas las unidades CD-ROM pueden leerlos. Además, su bajo coste hace del CD-R un medio de almacenamiento extremadamente ventajoso, gracias a su coste de cerca de 15 Ptas. por MB. Además, gracias a su característica de una única escritura, los discos CD-R son un medio de archivo legalmente aprobado en muchos países.

La aparición del sistema CD-RW apareció prácticamente como respuesta a la demanda de los usuarios de CD-R. Éstos reclamaban un medio, compatible con el CD-ROM, donde se pudiesen grabar y borrar los ficheros varias veces, sin necesidad de utilizar diferentes CDs cada vez.

Tecnología de cambio de fase

En su estado original, la capa de grabación de un CD-RW es policristalina, durante la escritura, un haz láser calienta selectivamente zonas del material de cambio de fase por encima de las temperaturas de licuefacción (500-700ºC), así que todos los átomos en esta área pueden moverse rápidamente en el estado líquido.

 Entonces, si se enfrían lo suficientemente rápido, el caótico estado líquido es congelado y se obtiene el denominado `estado amorfo'. Si el material fase-cambiante se calienta por debajo de la temperatura de fusión, pero por encima de la temperatura de cristalización (200ºC), durante el tiempo suficiente, los átomos vuelven de nuevo a un estado ordenado. Los estados amorfos y cristalinos tienen diferentes índices de reflectividad, y pueden ser ópticamente diferenciables. En el sistema CD-RW, el estado amorfo tiene una reflectividad menor que las zonas cristalinas y, durante la lectura, esto produce una señal similar a la de un CD convencional. La capa fase-cambiante consiste en un sustrato de policarbonato en el que se sitúa un grupo de capas (normalmente 5).

CD-R y CD-RW: funciones diferentes

El CD-RW no va a ocupar el lugar del CD-R, sino a realizar aquellos trabajos para los cuales el CD-R no es la mejor opción. En otras palabras, los discos CD-R y CD-RW existirán los unos junto a los otros: el CD-R es un sistema de una única escritura, económico y capaz de ser leído en cualquier unidad lectora. El CD-RW, por otra parte, puede ser reescrito, y leído por unidades MultiRead.

Tras la aparición de los sistemas de grabación de CD basados en IDE, las perspectivas de este sector se han revolucionado por completo.

Cada una de las grabadoras analizadas es capaz de contemplar una serie de condiciones preestablecidas a la hora de generar el Cd final, por lo que, precisamente, un punto a tener muy en cuenta es la cantidad de estas normas que soportan. Debido a que la tecnología de grabación evoluciona de forma paralela a los dispositivos lectores, vamos conociendo palabras como ISO-9660, XA, Video-Cd.

Cada una de estas palabras nos dirige al denominado Libro Naranja, un compendio de requerimientos a cumplir por los fabricantes de dispositivos para poder lucir en sus cubiertas anagramas de las normativas contenidas en el mismo. De hecho, en ocasiones nos encontramos con que este tipo de unidades de grabación no soporte todos los formatos conocidos, con lo que tras su compra nos encontramos que no es lo que esperábamos

En principio, la norma ISO-9660, en donde encontramos hasta un total de 3 variaciones, nos permite generar discos convencionales, en los que es posible aumentar el numero de caracteres habituales de la FAT hasta un máximo de 64.

 Las dos variantes más utilizadas a raíz de la presentación de Windows 95 son Joliet (que solo permite nombres largos bajo Windows 95) y Romeo (optimizada para poder leer los discos generados por ella tanto con Windows 95 como con NT).

Posteriormente, apareció el soporte XA, que permitía la incorporación de pistas de datos y audio en un mismo soporte. De ésta se creó una segunda variante, un conjunto de pistas con datos y audio de forma segura, aunque no podían ser leídos en un lector de CD Audio.
Como solución a esta imposibilidad de reproducir las pistas de audio normales en los reproductores de Cd Audio, se creó el estándar Enhanced Music CD, conocido también como CD plus, en donde las pistas de audio y datos son almacenadas como sesiones distintas, pudiendo escucharse este Cd´s en los equipos de audio normales.

Tras estos formatos han ido apareciendo modificadores de información, como pueden ser CD-i, Video-Cd, Photo-Cd u otros formatos que, partiendo del estándar ISO 9660, han desarrollado características particulares, aunque la verdadera revolución no llegó hasta la aparición del IPW (Incrementa Packet Writer). Este nuevo formato permitía realizar grabaciones de una sola pasada, con un ahorro efectivo de espacio en disco, al utilizar bloques mucho más pequeños y realizar modificaciones de los contenidos sin estropear los contenidos anteriores.

Regrabadoras de CD

Existen en el mercado varios tipos de grabadoras de CDs, pudiéndose distinguir fundamentalmente dos grupos: doméstico y profesional. El grupo doméstico será el compuesto por las unidades grabables y regrabables individuales, que necesitan forzosamente su instalación o conexión con un equipo informático. Los sistemas profesionales, por su parte, suponen la respuesta de la industria de hardware para las pequeñas y medianas empresas que necesitan de manera regular editar pequeña tiradas de CDs, y quieren hacerlo sin dejarse en el intento una buena cantidad de dinero. 

Por tanto, el segmento profesional estará formado por sistemas de grabación con posibilidad de realizar grabaciones paralelas (varios CDs al tiempo); e incluso de manera autónoma, es decir, sin necesitar conexión con un ordenador.

DVD-ROM

La especificación DVD según algunos fabricantes, Digital Vídeo Disc, según otros, Digital Versatile Disc-, no es más que un nuevo intento por unificar todos los estándares óptico-digitales de almacenamiento, es decir, cualquier sistema de grabación que almacene imágenes o sonido. DVD abarca todos los campos actualmente existentes, por lo que, si llega a implantarse, un mismo disco DVD podrá utilizarse para almacenar películas, música, datos informáticos, e incluso los juegos de consolas.

Cuando allá a principios d los ochenta Phillips y Sony presentaron al mundo el famoso compact Disc, con tecnología absolutamente digital, comenzó una lenta pero imparable revolución que ha cambiado radicalmente el mundo de la informática, la imagen y, por supuesto, el sonido. Una de las primeras y recién extendidas aplicaciones del entonces recién nacido compact disc fue el almacenamiento de hasta 74 minutos de música el conocido cassette.

La ventaja del invento eran muchas: primero la reproducción era totalmente digital, con lo que la calidad de la música rozaba la perfección con nada menos que 44,1 Khz de muestreo. Además, la superficie del disco no sufría ningún desgaste por un uso prolongado, al no existir partes mecánicas en contacto con él, como ocurre en los discos de vinilo y casetes. 

Por ello, la duración del CD de música era prácticamente ilimitada. Tampoco podemos olvidar el bajísimo coste de producción, la rapidez y facilidad de grabación que supuso frente a los métodos originales.

Por estas razones y por triunfar en el mundo discográfico, se comenzó a extender su uso en los ordenadores personales. Hablamos a finales de los ochenta, cuando los discos duros de los ordenadores que se vendían no superaban los 200 Mbytes, entonces aparece un soporte capaz de almacenar hasta 650 mbytes de datos.

 Esto conllevó un cambio radical en la informática personal de esos años, más aún una vez que, ya entrados en los noventa, los lectores de CD-ROM situaron su precio a unos niveles aptos para ser incluidos de serie hasta en los ordenadores de bajo coste. Pero tampoco podemos olvidar otros usos como el CD-i un desarrollo de Phillips diseñado para contener obra multimedia y programas domésticos interactivos, o el vídeo CD y LaserDisc, dos formatos que sufrieron un severo batacazo en el mercado debido a su escasa aceptación.

La informática es una enorme industria que no cesa de innovar y, junto con el aumento de prestaciones de los modernos PCs, la capacidad de los discos duros a varios gigas y la asombrosa cantidad de espacio que precisan las creaciones multimedia y
juegos de última novedad, los 650 Mbytes de clásico CD comenzaron a quedarse permite extraer la información que contiene ese disco.

pequeños. Esto ocurrió justo cuando el CD-ROM vivía uno de sus mejores momentos, ya que las grabadoras de CD habían reducido su precio hasta resultar asequibles al usuario doméstico e incluso se había extendido el CD-RW (reescribible).
En este momento es cuando aparece en escena un nuevo formato, el DVD (Digital Versalite Disc), que comenzó a ser investigado allá por el 95 y que más que un nuevo sistema es una mejora o evolución del actual disco compacto. Inicialmente fue concebido como el sustituto de las cintas de VHS, pues ofrece mayor calidad y unas excelentes cualidades que podemos ver en el apartado dedicado al vídeo.

Pero igual que ocurrió anteriormente con el disco compacto, pronto se aplicó a la informática pro su enorme atractivo; la impresionante capacidad de almacenamiento. Esto no quita otros empleos, como el almacenamiento de sonido.

Las diferencias externas con respecto al un CD convencional son nulas, ya que un disco DVD cuenta con el mismo tamaño, un grosor algo más fino pero muy similar, así
como un color y aspecto prácticamente igual. Las verdadera desigualdades hay que buscarlas en el interior del disco. Para empezar el aumento de la capacidad de almacenamiento tiene una explicación muy simple. 

Un CD convencional almacena la información circular, accediendo a ella secuencialmente, desde la parte interior del disco hacia el exterior. Dentro de esa pista encontramos diminutas hendiduras realizadas sobre la capa de metal por un rayo láser que son las que marcan los 0 y 1. La lectura e interpretación de esas hendiduras gracias a la reflexión del rayo láser de baja potencia

Pues bien, la diferencia con el nuevo DVD es que la separación entre cada pista circular es menor, así como el espacio ocupado por cada una de esas hendiduras del disco. Hablando en cifras, podemos comparar las 1,6 micras de separación entre pistas que posee el CD convencional frente a las 0,74 del DVD, o que el tamaño de la marca realizada sobre la superficie pasa de ocupar 0,83 micras 0,4. Asimismo el láser, que ya no emplea luz infrarrojos sino luz roja, posee una menor longitud de onda, que además es variable con el objetivo de poder enfocar diferentes capas de información.

Pero aparte de las evidentes ejoras conseguidas en el almacenamiento físico de los datos, existen otras dos técnicas que permiten aumentar aún mas la capacidad del DVD. Así, contamos con la posibilidad de almacenar información en las dos caras del disco y disponemos de dos capas diferentes por cada cara. Pero vayamos por partes. En un disco DVD convencional podemos almacenar hasta 4,7 Gbytes, pero si se graba por las dos caras alcanzaremos justo el doble, es decir, los 9,4 Gbytes. El mayor inconveniente de esto reside en que con los lectores actuales nos tendremos que tomar las molestias de dar la vuelta al disco si queremos acceder a la segunda cara.

La otra posibilidad que antes comentábamos en mucho más cómoda, consiste en dotar al DVD de dos capas distintas, la primera de ellas, semitransparente, almacenar los 4,7 Gbytes, más una segunda capa situada detrás de la principal que es capaz de almacenar otros 3,8 Gbytes adicionales, con lo que el espacio total se sitúa en los 8,5
Gbytes. Sin embargo, hay una última opción que consiste en combinar las dos técnicas, doble cara/doble capa, con lo que obtendremos los prometidos 17 Gbytes. En conclusión, un tamaño suficiente para almacenar hasta 26 CD-ROM convencionales.

Los lectores DVD-ROM son tremendamente polivalentes, ya que son totalmente compatibles con los formatos de CD-Rom, incluido el CD de audio. Además, son capaces de reproducir las películas DVD-Video con unos mínimos requerimientos técnicos. Esto supone que resulta mucho más barato preparar nuestro ordenador para ver películas en DVD que comprar uno de los DVD-Video, cuyos precios aún están lejos de resultar asequibles.

La velocidad de la que parte el DVD-ROM es equivalente a la de un lector de CD-ROM 10x convencional. Esto significa, por ejemplo, que un lector de DVD 2x, obtendría teóricamente unos 3.000 Kbytes por segundo leyendo datos desde un disco DVD.
Lo que sí ha cambiado sustancialmente son los tiempos de acceso, las nuevas unidades DVD-ROM ofrecen unos mejores tiempos de acceso frente a los tradicionales lectores de CD-ROM, avance lógico dado que han de buscar información en un verdadero mar de datos.

La interfaz SCSI prácticamente desaparece del panorama DVD, fundamentalmente por el eminente enfoque doméstico que aún tienen los lectores DVD y porque las últimas interfaces IDE Ultra DMA/33 cumplen sobradamente con las necesidades de ancho de banda de este tipo de periféricos.

DVD-RAM

El concepto es tan simple como el disponer de un disco escrito en formato DVD, regrabable más de 100.000 veces y con una capacidad de hasta 2,6 Gbytes por cara. No obstante, el principal problema que nos encontramos actualmente con los discos DVD-RAM es su incompatibilidad con los lectores DVD-ROM existentes. Así, en primer lugar, los discos se encuentran dentro de una carcasa protectora que recuerda mucho a los antiguos caddy de las primeras unidades CD-ROM y, en segundo, el sistema empleado para almacenar los datos difiere del usado en los discos DVD normales.

La capacidad máxima por cara del actual DVD-RAM se sitúa en los 2,6 Gbytes, la razón de esta diferencia respecto al DVD-ROM y sus 4,7 Gbytes la encontramos en las características internar necesarias para que sea posible la regrabación de un disco. En estos momentos nos encontramos en el mercado dos tipos de discos, el llamado <Type I> y el <Type II>. La diferencia entre ellos es muy sencilla. El primero es capaz de almacenar hasta 5,2 Gbytes, a razón de 2,6 Gbytes por cara. Mientras tanto, el segundo tipo sólo alcanza los 2,6 Gbytes (emplea una sola cara), pero puede ser retirado del cartucho protector para ser introducido en un lector DVD que soporte el formato DVD-RAM.

Método de Grabación de DVD-RAM

Los discos DVD-RAM están divididos en veinticuatro zonas circulares, separadas entre sí por unas marcas de solo lectura empleadas para permitir una rápida localización de la información almacenada. La distancia entre marca y marca es exactamente la misma, lo que significa que todas, estén en la parte interior o exterior del disco, almacena exactamente la misma cantidad de información. Estas marcas son apreciables a simple vista al observar un disco DVD-RAM y se diferencian claramente del esto de la superficie del disco.

El método empleado podría traducirse como <material de cambio de fase>. Este material, utilizado en los discos DVD-RAM, posee unas moléculas que pueden tomar dos estados: cristalino o amorfo. En cada uno de los estados, el material posee distintos niveles de refectividad que son detectado cuando leemos el disco.

Cuando se desea grabar datos, el láser recorre la superficie elevando la temperatura de forma variable, cambiando así los estados de las moléculas y creando zonas en estado cristalino/amorfo que, al final, diferencian los estado 0 y 1 al código binario. Para que el material alcance el cambio de estado, el láser ha de llevarlo hasta el punto de fusión situado en los 600º C, tras el cual, las moléculas adquieren el estado amorfo cuando son enfriadas repentinamente. Ahora, la estructura posee una baja reflectividad que será detectada durante la operación de lectura. Para borrar esa zona y devolverla al estado original, el láser ha de superar los 350º C y disminuir la temperatura de forma progresiva, con lo que el material recuperará el estado cristalino.

Este dispositivo no puede superar los 2,6 Gbytes, primero por la propia estructura dividida en zonas resta un espacio significativo; después, la longitud empleada por los bits de información es casi el doble que el usado en los DVD-ROM, al igual que ocurre en la separación entre las diferentes pistas que componen el disco.

Como ventajas los DVD-Ram ofrecen el sistema de giro ZCLV (Zoned Constant Linear Velocity), que mantienen constante la velocidad de giro del disco en cualquier parte del mismo. También exhiben los mismos parámetros en lo que se refiere a longitud de sectores, código de modulación, longitud de onda del láser y sistemas de corrección de errores que el DVD-ROM tradicional.

A nivel de sistema de archivos, los nuevos DVD-RAM son muy polivalentes, ya que permiten la grabación de particiones FAT 16, FAT 32 o el mas indicado para estos soportes: el formato UDR. Cada uno de los formatos tiene sus características propias, aunque el más indicado, y con el conseguiremos obtener los mejores resultados en cuanto a capacidad de almacenamiento, parece ser el UDF.

Pero para empezar a trabajar con nuestro DVD-RAM tendremos que tener, al menos por el momento, una controladora SCSI, ya que aún no están disponibles estos periféricos en formato IDE.



Disco Duro



LA MEMORIA SECUNDARIA


Cerca de la mitad de los años 50´s, las posibilidades prácticas de los procesadores fueron ampliadas notablemente con el uso de memorias auxiliares externas. Cintas, discos y tambores magnéticos registran gran cantidad de información para conservarla permanentemente o bien para utilizarla rápidamente durante las fases de procesamiento.

Se denomina memoria auxiliar debido a que reside lejos del procesador. Comparada con memoria principal, memoria secundaria tiene mayor capacidad a menor costo por byte, pero el tiempo que toma hacer acceso a los datos en ella es mayor que en la memoria principal.
La memoria masiva o auxiliar trata de suplir las deficiencias de la memoria central. Estas son, su relativa baja capacidad y el hecho de que la información almacenada se borra al eliminar la alimentación de energía eléctrica . En efecto, los dispositivos de memoria masiva auxiliar (hoy día principalmente discos y cintas magnéticas) son mucho más capaces (del orden de 10000 veces o más) que la memoria principal, y en ellos se puede grabar la información durante mucho tiempo.


Según la definición de periférico dada anteriormente, éstos están constituidas por unidades de entrada, unidades de salida y unidades de memoria masiva auxiliar. Estas últimas unidades también pueden considerarse como unidades de E/ S, ya que el ordenador central puede escribir (dar salidas) sobre ellas, y la información escrita puede ser leída, es decir, ser dada como entrada. Ahora bien, la información grabadas en estos soportes no es directamente inteligible para el usuario de la ordenador, esto es, no puede haber una intercomunicación directa usuario-ordenador como la que hay a través de un teclado/ pantalla.

EL DISCO DURO


El disco duro es el sistema de almacenamiento más importante de su computador y en el se guardan los archivos de los programas - como los sistemas operativo D.O.S. o Windows 95, las hojas de cálculo (Excel, Qpro, Lotus) los procesadores de texto (Word, WordPerefct, Word Star, Word Pro), los juegos (Doom, Wolf, Mortal Kombat) - y los archivos de cartas y otros documentos que usted produce.

La mayoría de los discos duros en los computadores personales son de tecnología IDE (Integrated Drive Electronics), que viene en las tarjetas controladoras y en todas las tarjetas madres (motherboard) de los equipos nuevos. Estas últimas reconocen automáticamente (autodetect) los discos duros que se le coloquen, hasta un tamaño de 2.1 gigabytes.

La tecnología IDE de los discos duros actuales ha sido mejorada y se le conoce como Enhaced IDE (EIDE), permitiendo mayor transferencia de datos en menor tiempo. Algunos fabricantes la denominan Fast ATA-2. Estos discos duros son más rápidos y su capacidad de almacenamiento supera un gigabyte. Un megabyte (MB) corresponde aproximadamente a un millón de caracteres y un gigabyte (GB) tiene alrededor de mil megabytes. Los nuevos equipos traen como norma discos duros de 1.2 gigabytes.

Las motherboards anteriores con procesadores 386, y las primeras de los 486, reconocen solo dos discos duros, con capacidad hasta de 528megabytes cada uno y no tienen detección automática de los discos. Para que estas motherboards reconozcan discos duros de mayor capacidad, debe usarse un programa (disk manager) que las engaña, haciéndoles creer que son de 528 megabytes.

Si su computador es nuevo, la motherboard le permite colocar hasta cuatro unidades de disco duro. El primer disco duro se conoce comoprimario master, el segundo como primario esclavo, el tercero como secundario master y el cuarto como secundario esclavo. El primario master será siempre el de arranque del computador (C :\>).

La diferencia entre master y esclavo se hace mediante un pequeño puente metálico (jumper) que se coloca en unos conectores de dos paticas que tiene cada disco duro. En la cara superior del disco aparece una tabla con el dibujo de cómo hacer el puente de master, esclavoo master con esclavo presente.

 PARTES DEL DISCO DURO


La estructura física de un disco es la siguiente: un disco duro se organiza en platos (PLATTERS), y en la superficie de cada una de sus dos caras existen pistas (TRACKS) concéntricas, como surcos de un disco de vinilo, y las pistas se dividen en sectores (SECTORS). El disco duro tiene una cabeza (HEAD) en cada lado de cada plato, y esta cabeza es movida por un motor servo cuando busca los datos almacenados en una pista y un sector concreto.

El concepto "cilindro" (CYLINDER) es un parámetro de organización: el cilindro está formado por las pistas concéntricas de cada cara de cada plato que están situadas unas justo encima de las otras, de modo que la cabeza no tiene que moverse para acceder a las diferentes pistas de un mismo cilindro.

En cuanto a organización lógica, cuando damos formato lógico (el físico, o a bajo nivel, viene hecho de fábrica y no es recomendable hacerlo de nuevo, excepto en casos excepcionales, pues podría dejar inutilizado el disco) lo que hacemos es agrupar los sectores en unidades de asignación (CLUSTERS) que es donde se almacenan los datos de manera organizada. Cada unidad de asignación sólo puede ser ocupado por un archivo (nunca dos diferentes), pero un archivo puede ocupar más de una unidad de asignación.

FUNCIONAMIENTO DEL DISCO DURO

Cuando usted o el software indica al sistema operativo a que deba leer o escribir a un archivo, el sistema operativo solicita que el controlador del disco duro traslade los cabezales de lectura/escritura a la tabla de asignación de archivos (FAT). El sistema operativo lee la FAT para determinar en qué punto comienza un archivo en el disco, o qué partes del disco están disponibles para guardar un nuevo archivo.

Los cabezales escriben datos en los platos al alinear partículas magnéticas sobre las superficies de éstos. Los cabezales leen datos al detectar las polaridades de las partículas que ya se han alineado.

Es posible guardar un solo archivo en racimos diferentes sobre varios platos, comenzando con el primer racimo disponible que se encuentra. Después de que el sistema operativo escribe un nuevo archivo en el disco, se graba una lista de todos los racimos del archivo en la FAT.

Un ordenador funciona al ritmo marcado por su componente más lento, y por eso un disco duro lento puede hacer que tu MAQUINA sea vencida en prestaciones por otro equipo menos equipado en cuanto a procesador y cantidad de memoria, pues de la velocidad del disco duro depende el tiempo necesario para cargar tus programas y para recuperar y almacenar tus datos.

CARACTERISTICAS DEL DISCO DURO

A continuación vamos a indicar los factores o características básicas que se deben tener en cuenta a la hora de comprar un disco duro.

  •  Capacidad de almacenamiento 

La capacidad de almacenamiento hace referencia a la cantidad de información que puede grabarse o almacenar en un disco duro. Hasta hace poco se medía en Megabytes (Mg), actualmente se mide en Gigabytes (Gb).

Comprar un disco duro con menos de 3,5 GIGAS de capacidad dará lugar a que pronto te veas corto de espacio, pues entre el sistema operativo y una suite ofimática básica (procesador de texto, base de datos, hoja de cálculo y programa de presentaciones) se consumen en torno a 400 MB.

Si instalas los navegadores de MICROSOFT y NETSCAPE suma otros 100MB; una buena suite de tratamiento gráfico ocupa en torno a 300MB y hoy en día muchos juegos ocupan más de 200MB en el disco duro.

Ya tenemos en torno a 1,5 GIGAS ocupados y aún no hemos empezado a trabajar con nuestro ordenador.

Si nos conectamos a internet, vermos que nuestro disco duro empieza a tener cada vez menos espacio libre, debido a esas páginas tan interesantes que vamos guardando, esas imágenes que resultarán muy útiles cuando diseñemos nuestra primera Página WEB y esas utilidades y programas SHAREWARE que hacen nuestro trabajo más fácil.


  • Velocidad de Rotación (RPM)


Es la velocidad a la que gira el disco duro, más exactamente, la velocidad a la que giran el/los platos del disco, que es donde se almacenan magnéticamente los datos. La regla es: a mayor velocidad de rotación, más alta será la transferencia de datos, pero también mayor será el ruido y mayor será el calor generado por el disco duro. 

Se mide en número revoluciones por minuto ( RPM). No debe comprarse un disco duro IDE de menos de 5400RPM (ya hay discos IDE de 7200RPM), a menos que te lo den a un muy buen precio, ni un disco SCSI de menos de 7200RPM (los hay de 10.000RPM). 

Una velocidad de 5400RPM permitirá una transferencia entre 10MB y 16MB por segundo con los datos que están en la parte exterior del cilindro o plato, algo menos en el interior.


  • Tiempo de Acceso (Access Time)

Es el tiempo medio necesario que tarda la cabeza del disco en acceder a los datos que necesitamos. Realmente es la suma de varias velocidades:


* El tiempo que tarda el disco en cambiar de una cabeza a otra cuando busca datos.
* El tiempo que tarda la cabeza lectora en buscar la pista con los datos saltando de una a otra.
* El tiempo que tarda la cabeza en buscar el sector correcto dentro de la pista.
Es uno de los factores más importantes a la hora de escoger un disco duro. Cuando se oye hacer ligeros clicks al disco duro, es que está buscando los datos que le hemos pedido. Hoy en día en un disco moderno, lo normal son 10 milisegundos.


  •  Memoria CACHE (Tamaño del BUFFER)


El BUFFER o CACHE es una memoria que va incluida en la controladora interna del disco duro, de modo que todos los datos que se leen y escriben a disco duro se almacenan primeramente en el buffer. La regla de mano aquí es 128kb-Menos de 1 Gb, 256kb-1Gb, 512kb-2Gb o mayores. Generalmente los discos traen 128Kb o 256Kb de cache.

 Si un disco duro está bien organizado (si no, utilizar una utilidad desfragmentadora: DEFRAG, NORTON SPEEDISK, etc.), la serie de datos que se va a necesitar a continuación de una lectura estará situada en una posición físicamente contigua a la última lectura, por eso los discos duros almacenas en la caché los datos contiguos, para proporcionar un acceso más rápido sin tener que buscarlos.

 De ahí la conveniencia de desfragmentar el disco duro con cierta frecuencia.
El buffer es muy útil cuando se está grabando de un disco duro a un CD-ROM, pero en general, cuanto más grande mejor, pues contribuye de modo importante a la velocidad de búsqueda de datos.


  • Tasa de transferencia (Transfer Rate)

Este número indica la cantidad de datos un disco puede leer o escribir en la parte más exterrior del disco o plato en un periodo de un segundo. Normalmente se mide en Mbits/segundo, y hoy en día, en un disco de 5400RPM, un valor habitual es 100Mbits/s, que equivale a 10MB/s.

  • Interfaz (Interface) - IDE - SCSI

Es el método utilizado por el disco duro para conectarse al equipo, y puede ser de dos tipos: IDE o SCSI.

Todas las placas bases relativamente recientes, incluso desde las placas 486, integran una controladora de disco duro para interfaz IDE (normalmente con bus PCI) que soporta dos canales IDE, con capacidad para dos discos cada una, lo que hace un total de hasta cuatro unidades IDE (disco duro, CD-ROM, unidad de backup, etc.)
Debemos recordar, sin embargo, que si colocamos en un mismo canal dos dispositivos IDE (e.g. disco duro+CD-Rom), para transferir datos uno tiene que esperar a que el otro haya terminado de enviar o recibir datos, y debido a la comparativa lentitud del CD-ROM con respecto a un disco duro, esto ralentiza mucho los procesos, por lo que es muy aconsejable colocar el CD-ROM en un canal diferente al de el/ los discos duros.

La velocidad de un disco duro con interfaz IDE tambien se mide por el PIO (modo programado de entrada y salidad de datos), de modo que un disco duro con PIO-0 transfiere hasta 3,3MB/s, PIO-1 hasta 5,2MB/s, PIO-2 hasta 8,3MB/s. Estos modos anteriores pertenecen a la especificación ATA, pero en la especificación ATA-2 o EIDE, los discos duros pueden alcanzar PIO-3, hasta 11,1MB/s, o PIO-4, hasta 16,6MB/s. Los discos duros modernos soportan en su mayoría PIO-4.

Recientemente se ha implementado la especificación ULTRA-ATA o ULTRA DMA/33, que puede llegar a picos de transferencia de hasta 33,3MB/s. Este es el tipo de disco duro que hay que comprar, aunque nuestra controladora IDE no soporte este modo, pues estos discos duros son totalmente compatibles con los modos anteriores, aunque no les sacaremos todo el provecho hasta que actualicemos nuestro equipo.
En cuanto al interfaz SCSI, una controladora de este tipo suele tener que comprarse aparte (aunque algunas placas de altas prestaciones integran este interfaz) y a pesar de su precio presenta muchas ventajas.

Se pueden conectar a una controladora SCSI hasta 7 dispositivos (o 15 si es WIDE SCSI)de tipo SCSI (ninguno IDE), pero no solo discos duros, CD-ROMS y unidades de BACKUP, sino también grabadoras de CD-ROM (las hay también con interfaz IDE), escáneres, muchas de las unidades de BACKUP, etc.

Otra ventaja muy importante es que la controladora SCSI puede acceder a varios dispositivos simultáneamente, sin esperar a que cada uno acabe su transferencia, como en el caso del interfaz IDE, aumentando en general la velocidad de todos los procesos.

Las tasas de transferencia del interfaz SCSI vienen determinados por su tipo (SCSI-1, Fast SCSI o SCSI-2, ULTRA SCSI, ULTRA WIDE SCSI), oscilando entre 5MB/s hasta 80MB/s. Si el equipo va a funcionar como servidor, como servidor de base de datos o como estación gráfica, por cuestiones de velocidad, el interfaz SCSI es el más recomendable.